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Abstract
A set of fourteen scalar, non-probabilistic measures - some old, some new - is examined in
the rare-event situation. The set includes measures of accuracy, association, discrimination,
bias, and skill. It is found that all measures considered herein are inequitable in that they
induce under- or over-forecasting. One condition under which such bias is not induced (for
some of the measures) is when the underlying class-conditional distributions are gaussian

(normal) and equivariant.



1 Introduction

Forecast quality has been extensively examined by Murphy (1991, 1993). One lesson that
emerges from those considerations is that forecast quality, or the performance of a forecaster
or of an algorithm, is an inherently multifaceted quantity. In other words, although it is
quite common to express performance in terms of a single, scalar (i.e. one-dimensional)
quantity (e.g., fraction correct, the critical success index, etc.), such considerations are apt
to be incomplete. A complete and faithful analysis must consider all the various components
of performance quality.

As argued by Murphy and Winkler (1987), one quantity that encapsulates all the com-
ponents of performance is the joint probability of observations, z, and forecasts, f. When
x and f are discrete, the joint probability can be represented as a contingency table. For
example, if the observations consist of the existence or the nonexistence of tornados, then the
number of rows in the contingency table is 2. Additionally, if the forecasts are probabilities
given in intervals of 10%, then the contingency table is 2 x 11, and if the forecasts are binary
(yes/no), then it is 2 x 2. In the present article, only the 2 x 2 case is considered. In other
words, both the observations and the forecasts are assumed to be binary.

Not withstanding the multidimensionality of performance, there exist situations in which
this multidimensionality must be distilled to a single, scalar quantity. For example, in decid-
ing the winner of a forecasting contest, this multidimensionality allows for multiple first-place
winners; different first-place winners may excel one another in terms of different components
of performance. As a result, even in probabilistic forecasting contests, performance is gauged
in terms of some scalar quantity such as the ranked probability score (Hamill and Wilks,
1995). Of course, it is possible that a unique candidate may outperform all of the other

candidates in terms of all the different components of performance, or that the particular



component of performance that is of interest is unambiguously self-evident. However, neither
situation is guaranteed, or even likely.

For this and other reasons, scalar measures of performance are in common use. A num-
ber of these measures are derived from the contingency table itself, but at least 2 measures
of performance are required to account for the 2 degrees of freedom present in the (2 x 2)
contingency table (see next section). As mentioned above, however, frequently it is impos-
sible to optimize both measures simultaneously. For example, it is known that the critical
success index is “inequitable” (Gandin and Murphy, 1992) in that it can induce “hedging.”
Another way of saying this is that the critical success index and bias cannot be optimized
simultaneously, i.e., that the maximum of the critical success index does not correspond to
unbiased (bias=1) forecasts. It has also been argued (Doswell, et al., 1990) that the true skill
score can induce similar “hedging” in rare-event situations while Heidke’s skill score does
not. Indeed, Vislocky (1997) has claimed that “all” measures are generally inequitable. In
this article, fourteen scalar measures based on the 2 x 2 contingency table will be examined in
the rare-event situation. It will be shown that forecasts that optimize any single one of these
measures are generally biased in a rare-event situation, and can therefore be said to induce
“hedging” or be “inequitable.” Although the concept of “hedging”, as put forth by Murphy
and Epstein (1967), relates to probabilistic forecasts and scoring rules, these measures do

induce under- or over-forecasting in a rare-event situation.

2 Measures of Performance Quality

The question as to what exactly is a proper measure of performance quality has been ad-
dressed extensively in the past (Brooks and Doswell, 1996; Gandin and Murphy, 1992; Mur-

phy, 1993, 1996; Murphy and Winkler, 1992; Murphy and Winkler, 1987). In this section, 14



measures of categorical forecast performance will be defined. The measures are derived from

the contingency table (otherwise known as the confusion matrix), or in short the C-table

Ctable — [ @ b _ # of 0’s predicted as 0 # of 0’s predicted as 1
avle = d N # of 1’s predicted as 0 # of 1’s predicted as 1/’

B . false alarms
o misses hits '

The total number of nonevents (0s) is given by Nog = a+b, that of events (1s) is Ny = ¢+d, and
the total sample size is N = Ny + N;. Note that this table has only 2 degrees of freedom;
a general 2 x 2 matrix has 4 degrees of freedom, but with the 2 constraints Ny = a + b
and N7 = ¢ + d, that number is reduced to 2. Two common quantities, Probability of
Detection (POD) and False Alarm Ratio (FAR), are easily calculated as POD= d/(c + d)
and FAR=b/(b+ d). 1t is, however, convenient to write all of the measures in terms of the
two error rates - the rate at which 0s are misclassified as 1s, ¢g; = b/Ng, and the rate at

which 1s are misclassified as 0s, ¢;9 = ¢/N;. Therefore,

Co1

co1 + Nio(1 — (?10)7

POD =1- €10, FAR, =

where Njg is simply the ratio of the sample sizes, Nig = Ny /Nj.

Specifically, the measures analyzed are’

1. Product of POD and (1-FAR)

(1 —c10)?

PRD = POD x (1 — FAR) = ;— — =& —

2. Average of POD and (1-FAR)

1
1 — c10 4+ Norcon

AVG = [POD + (1 — FAR)]/2 = %(1 —e)(1 4

!None of the measures considered here allows for assigning specific costs of misclassification; for that
purpose one must construct a scoring matrix reflecting the desired costs of misclassification.
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11. Discrimination Measure

1

DIS =
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for ad —be ~ (1 — co1 — ¢19) > 0, and ad — be < 0, respectively. We also define two new

measures - a pair of angles § and ¢

12.
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Finally, the bias of the forecasts will be gauged with

14. Bias

Bias =

b+4d

[

+d

Nlo(l — 2610 —|— 26%0) — N()l(l — 2601 —|— 2031)

=1—ci0+ Noicor -

In the above equations Ng; stands for Ng/N;. Unlike the other measures, 6 and ¢ are

measures of “error” in that lower values correspond to better performance. Although they,

too, can be transformed into measures of “success”,

their geometrical interpretation.

as shown below, that would obfuscate

The quantities PODx(1—FAR) and [POD+(1—FAR)]/2 are natural choices to maximize,

since optimal performance would correspond to the maximum of both POD and (1-FAR);
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both measures have been considered by Donaldson, et al. (1975a). The measure FRC is equal
to Finley’s measure (Murphy, 1993 and 1996). It is the measure of accuracy on which all of
the skill scores are based, and it is the weighted average of the two group-specific fractions
correct, a/Ng, and d/N;. Efficiency is simply the product of the two group-specific fractions
correct. This is a commonly used quantity in high energy detector physics. The un-weighted
average of the two is related to TSS: (a/No+d/Ny)/2 = (TSS+1)/2. CSI (Donaldson, et al.,
1975b) is an example of a measure with a long history and one that has been rediscovered
many times (Murphy, 1996). TSS and HSS are both derived from considerations of the
marginal probabilities, and they both take into account the non-skill related contributions
(e.g., chance, bias, etc.) to the C-table. The technical difference between the two is in the
way they are normalized (Doswell, et al., 1990): 7SS = Tr(C — E)/Tr(C* — E*), while
HSS =Tr(C — E)/Tr(C*— E), where F is the (biased) expected matrix based on C":

E_i((a—l—b)(a—l—c) (a—l—b)(b—l—d))
N\ (c+d)a+ec) (ec+d)(b+d) |-

This matrix is the C-table that one would obtain in the absence of any skill, i.e. with random
guessing; the proof can be found in many statistics texts. FE* is the (unbiased) expected

matrix based on a hypothetical diagonal C-table, C*, representing perfect accuracy:

o= (50 La) e (Wi R

The three measures GSS, CSS, and DSS complete the list of measures compiled by Murphy
(1996). Note that many of these measures are in fact related; for example, DSS=TSSx CSS.

Murphy, Brown and Chen (1989) define a measure of discrimination, DIS, derived from
the conditional probability p(f|z), i.e., the posterior probability of a forecast f given an
observation x. Specializing their formula for DIS to f = 0,1 results in the expressions for

DIS, given above.



The quantities # and ¢ are measures that to our knowledge have not been considered else-
where. Their origins are as follows: If the matrix C is symmetric, then it can be diagonalized

by a rotation (Similarity Transformation) of the basis axes:
A/\ — T@OT6_17

where A would be the diagonal matrix of the eigenvalues, and T is an orthogonal matrix

written in terms of a single rotation parameter 6

T Cosf —Sinb
A Sinf Cosh )

Clearly, a diagonal C-table would represent perfect performance, and as a result the angle of
rotation could serve as a measure of performance. However, for a non-symmetric matrix (as
is the case with C-tables if bias# 1) it is not possible to diagonalize with a single rotation,

but one can show that a transformation of the type
A/\ - TQCT(;S_I,

can render A diagonal, where Ty and T} are rotation matrices but with different angles 6 and
¢. % In the non-symmetric case, therefore, it requires a pair of quantities to provide a measure
of performance, namely § and ¢. This is again a consequence of the multidimensionality of
forecast quality (or the C-table). It is interesting that in an M x M C-table the number of
rotation angles necessary for diagonalization (i.e. 2 x %, the factor of 2 reflecting the

non-symmetric nature of the C-table) is exactly equal to the number of independent degrees

2In performing a pair of transformations of this type the orthonormality of the axes is
lost, weakening the geometrical significance of the angles of rotation. However, this is not a
problem since the C-table is only a table and not a true matrix, i.e. it does not transform

as a rank (1,1) tensor on V ® V*, where V is a vector space and V* its dual.



of freedom after the M “climatological constraints” (e.g. No = a + b, Ny = ¢+ d, for M=2)
have been taken into account, i.e. M? — M. However, it must be noted that these rotations
cannot produce a diagonal matrix with the proper climatological frequency.

Finally, as for bias (Wilks, 1995), if bias=1, then the forecasts are unbiased. If bias< 1,
then events are being underforecasted, otherwise overforecasting is occurring. ® Note that
bias=1 implies that the C-table is symmetric, i.e. b = ¢. Also note that if b = ¢, then = ¢.

In other words, the difference between the two measures # and ¢ is also a measure of bias.

3 Limiting Cases

It is evident from their defining equations that PRD, AVG, and CSI are independent of
a. This a-independence does not imply that these measures fail to incorporate the correct
classification of nonevents. The simplest way to see this is to note that one may always
substitute b = Ny — a in the defining equations for the measures. Since Nj is a fixed number,
then these measures do effectively depend on the element a. In this respect, they are perfectly
well-behaved measures in the rare-event situation.*

It is important to properly define what is meant by a “rare-event situation.” In a “rare-

event situation”, the C-table may look like
9990 10
40 60 /-
First, note that @ >> b and ¢ ~ d, 1.e. a is much larger than b, while ¢ is of the same order as

d. For this reason, Doswell, et al. (1990) consider the rare-event situation to be characterized

3The author is indebted to Robert L. Vislocky for introducing this notion of bias.
4In fact, since the C-table has only 2 degrees of freedom, it is sufficient for a measure to

depend on only 2 elements of the C-table, as long as one of them is either a or b, and the

other is either ¢ or d.
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by the inequality ¢ >> b. Also note that Ny = a + b = 10000 and N; = ¢+ d = 100, and
thus Ng >> Nj. This inequality is simply a reflection of Nature and its preferred proportion

of non-events to events. It is easy to show that
(a>>b) and (¢~d) — (Ng>> Np).

The converse is not true and so the inequality Ny >> Nj is “weaker” than (a >> b, ¢ ~ d).
Although both inequalities are useful definitions of a “rare-event situation”, only Ny >> N;
is an attribute of the “situation”; the other is a characteristic of the classifier itself. For
example, even when Ny = Ny, overforecasting alone can yield a C-table with @ >> 6. To
preserve the generality of the analysis, only Ny >> N; will be considered in this article. The
question then arises as to the effect this inequality may have on the various measures.

The examination of the measures of performance in the rare-event situation is fruitful in
general because even though the extreme inequality may not be realized in a given situation,
the existence of any inadequacy in such extremely-rare-event limits may hint at the existence
of an inadequacy (albeit a weaker one) even for situations where events are not extremely
rare. In other words, in order for the pathologies to be of serious consequence and concern
it is not necessary to have Ny >> Np; even Ny > N; (i.e. a common condition) may be
sufficient to raise concern.

One aim of this study is to examine whether or not different measures of performance
induce under- or over-forecasting in rare-event situations. For that reason, the role played
by bias is somewhat different from that of the other measures. To see how bias enters the
analysis, it is sufficient to consider the way in which one arrives at a C-table. Typically, the
forecaster makes a decision based on some quantity, e.g., dew point, gate-to-gate velocity
difference, probability, or a regression function representing many variables, by introducing

a decision threshold. If the measure of choice is “inequitable” (Gandin and Murphy, 1992),
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then the forecaster may be encouraged to lower or raise the decision threshold, in order to
optimize that measure. However, there is no guarantee that the optimum of the measure
corresponds to unbiased forecasts. In other words, in attempting to optimize a measure the
forecaster may be unintentionally under- or overforecasting.

Table 1 lists the values of the measures in several limits.> The C-table of case (I)
represents perfect accuracy, while that of case (IV) reflects a complete lack of accuracy. At
the same time, cases (1) and (IV) are equally and completely discriminatory. Cases (II) and
(I11) represent constant forecasts of all observations as events, or as nonevents, respectively.
In other words, case (II) corresponds to very low decision thresholds, i.e., over-forecasting,
and case (III) represents very high decision thresholds, under-forecasting. Another common
standard of reference is the expected matrix £ (previous section), and the values of the
measures in this no-skill limit are given in column (V).

Gandin and Murphy (1992) first note that CSI approaches N;/Ny in the limit (11) -
a value larger than the corresponding limits in (III) and (V) -and then argue that CSI is
inequitable in that a forecaster may increase his/her CSI by simply underforecasting. By
the same token, they argue that any measure whose values in columns (II), (III), and (V)
are unequal may encourage under- or over-forecasting and is therefore inequitable.

However, this does not preclude the remaining measures from inducing biased forecasts

>To obtain the values of the measures in these limits one must first introduce small pa-
Ny —¢€ ¢
Ny—A A

measures are calculated, then one may take the ¢, A\ — 0 limit. However, the limits of AVG,

rameters, €, A, in place of the zeros in the C-table, e.g., ( ) in (II). After the

and CSS, involve the ratio (A\/e¢), leading to ambiguous results. Later in this article, these
ambiguities will be shown to be related to the relative size of the standard deviations of the

two classes.
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as well. This can be seen by noting that even for a measure with vanishing limits in (II),
(I1T), and (IV), it is possible that the value of the threshold that optimizes such a measure
corresponds to a C-table whose bias is not equal to 1. As such, this measure is inequitable
because in the process of optimizing it one will be biasing the forecasts. ©

To examine the measures for any such inequitability, we expose the threshold-dependence
of the measures. That dependence is entirely contained to the quantities c¢g; and ¢19, and
so they can be written as co1(t) and ¢10(t), with ¢ being the decision threshold. Then, the
optima of the measures can be found by differentiating them with respect to ¢, and setting

the results equal to zero.

4 Some Exact Results

From Column (III) of Table 1 it is evident that FRC approaches Ny/N which in the rare-
event situation is approximately 1. But this is the value of FRC in the perfect skill limit
(column (I)). Therefore, by simply underforecasting one may increase FRC all the way up to
its maximum value. Similarly, CSS may approach No/N (columns (II) and (III)), and can
therefore suffer the same fate as FRC; the precise condition under which CSS approaches
No/N will be given in the next section. To a lesser degree AVG has the same problem, since
by simply underforecasting it approaches 0.5 (column (I11)) suggesting nontrivial skill when
in fact there is no skill at all. Both § and ¢ have values in columns (II) and (III) that are
either zero or approach 0 in the rare-event situation; but zero is also their perfect-accuracy

value (column (I)), and so they cannot distinguish between under-, over-, or perfect forecasts.

As such, AVG, FRC, CSS, 8, and ¢ are problematic measures.

6The author is indebted to one of the reviewers of this article for pointing out this ex-

tremely important and subtle point.
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As mentioned previously, the value of the decision threshold at which a given measure
is optimized is an important quantity, because if the bias at that critical threshold is not
equal to one, then the use of such a measure can induce under- or over-forecasting. For
the sake of brevity the details of the calculation will not be presented here, but it is easy
(though lengthy) to show that the derivatives of the measures CSI, HSS, and GSS are equal
in the rare-event situation. Therefore, they can be optimized simultaneously at a unique
threshold. However, it is not easy to compute the value of bias at this threshold. To that

end, an approximation must be made.

5 Gaussian Approximation

One may assume that the underlying distributions of the events and nonevents are gaussian
(normal) with means po, g1, and standard deviations og, 01, respectively (Figure 1). Al-
though this assumption may not be generally valid it is often a fair approximation and it

can aid in capturing some general properties of the measures. It is then straightforward to

show (Marzban, 1997)

1 1
Co1 = 5(1 —erf(lo)), and ¢ = 5(1 +erf(lh)),

where er f(z) is the gaussian error function, and ¢;,(z = 0,1) are defined as

t—,LLZ'

V2o;

t;

where t is the decision threshold.
TSS and FRC are special in that their critical thresholds can be computed, exactly, by
noting

d 2 .
Eerf(t) = AP
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which follows from the definition of the gaussian error function

er f(t)

exp””

-k
Then, one can prove that the critical threshold, ¢., maximizing FRC satisfies the quadratic

equation

11 [ o N Ny
— 2o By (B 0y 49 — 2log(=2) = 0.
(03 01) + (J% 03) (J% JO)+ og( ) og( )

It can also be shown that the relevant equation for TSS is given by the same quadratic
but without the last term (involving Ng, N7). Note that for the general case of unequal
variances, there are in fact two thresholds at which FRC and TSS are maximized, although
one of them occurs at very large values of the threshold. This is a consequence of having
two crossing points between the two distributions (Figure 1). The special case of equivariant

distributions, og = 07 = o, yields the intuitive results

f11 + fio o’ No

t. = + log(—), for FRC,
(——) R g(Nl)

o= (MR o TS,

In a rare-event situation the second term in the ¢, of FRC dominates the first term
thereby tending to increase, or decrease, t. without bound depending on the relative size
of p1 and po. Therefore, FRC induces underforecasting if gy > po, and over-forecasting
otherwise. Evaluating the bias at t. = (po + p1)/2 yields a positive quantity (if No > Np),
and therefore, TSS always induces overforecasting in a rare-event situation.

The remaining measures are difficult to address analytically, but they can be handled
graphically. Figures 2, 3, and 4, display all of the measures when o9 = o1, 09 < 01, and
o9 > o1, respectively. Without loss of generality the means have been set at yg = —1 and

p = 1, and the sample size ratio has been set at Ny/N; = 10. For more extreme rare-event
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situations, e.g. Ng/N; ~ 50,100, ..., the behavior of the curves is mostly unchanged, and
what change that does occur can be anticipated from the limiting values in Table 1. For
example, FRC has a “slight” peak in Figures 1 and 2; these peaks disappear as Ng/N;
increases because according to Table 1 the value of FRC for large values of the threshold
(i.e., extreme right hand side of the graphs) approaches 1.

If the variances are equal (Figure 2), then it can be seen that AVG, PRD, CSI, HSS,
GSS, DSS, reach their maxima at the threshold for which bias=1. Therefore, these measures
are equitable in the equivariant case. By contrast, the optima of the remaining measures
occur far from the bias=1 line; EFF, TSS, DIS, and ¢ induce overforecasting (bias> 1), FRC
and CSS induce underforecasting (bias< 1), while 6 is capable of inducing either.

For oy # o4, all measures are inequitable. If o9 < oy (Figure 3), then EFF, TSS, and pht,
induce overforecasting, while PRD, AVG, FRC, CSI, HSS, GSS, DSS, and CSS all induce
underforecasting. DIS and 6 can induce either. If g > o1 (Figure 4), all measures induce
overforecasting, except for FRC which induces underforecasting, and DIS and 6 which can
induce either. Note that the results of the previous sections can be seen in these figures.
For example, the values of the measures in columns (II) and (III) of Table 1 correspond to
the values of the measures in the extreme left, and extreme right hand side of the figures.
Additionally, CSI, HSS, and GSS, all have the same critical threshold, as anticipated. Also,
one of the crossing points at which § = ¢ coincides with the bias=1 line. This is a consequence
of the comment made at the end of section 2.

It is worth emphasizing that the equality or the inequality of the variances are statistical
statements. In other words, in a practical situation if the two variances are statistically

equivalent (to some level of significance), then it behooves one to assume equivariance of the

distributions. In that case, as shown above PRD, AVG, CSI, HSS, GSS, and DSS are all
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equitable measures in a statistical sense.

6 Conclusions

A number of scalar measures of performance quality are examined in the rare-event situation.
It is shown that AVG, FRC, CSS, 6, and ¢ are ill-behaved in that their perfect-performance
value coincides with their constant forecast value. Additionally, it is found that CSI, HSS,
and GSS, are optimized simultaneously at the same value of the decision threshold. It is
further shown that in a gaussian (normal) approximation if the variances of the distributions
are statistically distinct, then all of the measures considered herein are inequitable in that
they induce under- or over-forecasting in rare-event situations. If the gaussian distributions

are statistically equivariant, then such bias is precluded for some of the measures; these

measures are PRD, AVG, CSI, HSS, GSS, and DSS.
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Figure Captions
Figure 1. Two gaussian (normal) distributions with unequal variances.

Figure 2. The measures as a function of the decision threshold in a gaussian (normal),
equivariant (oo = o1) approximation. The measure DIS is plotted on a log scale to allow for

complete presentation. The vertical line represents the threshold at which bias is equal to 1.

Figure 3. The measures as a function of the decision threshold in a gaussian (normal)

approximation with o9 < o1. DIS is plotted on a log scale.

Figure 4. The measures as a function of the decision threshold in a gaussian (normal)

approximation with g > o1. DIS is plotted on a log scale.
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Table 1: The values of the measures at four limiting cases: perfect prediction of both
events and nonevents (I), constant forecasts of events (II) and nonevents (III), complete

misclassification of both events and nonevents (IV), and classification by random guessing

. . Nog 0 0 Ny Ny 0
(V). The C-tables in these four cases are, respectively, ( 0 N, ), ( 0 N, ), ( N, 0 ),

Ny 0
N = N() + Nl, N01 = No/Nl, and N10 = Nl/N().

0 N .
and ( 0 ) No and Np are the number of nonevents and events, respectively. Also

() (1) (111) (V) (V)
PRD 1 N 0 0 et
AVG 1T i+ 0.3 0 el
FRC 1 . i 0 R o A Ry —enot R )
EFF 1 0 0 0 R (E2 T ——
cST 1 i 0 0 TN, (st Novean)
TSS 1 0 0 q 0
HSS 1 0 0 o 0
GSS 1 0 0 T LT 0
CsS 1 NN R -1 0
DSS 1 0 0 1 0
DIS o 1 1 00 1
PR 0 0 /2 ptan D]
6 0 Han [(ZB] Han [(ZB] 0 gtan” (R ]
Bias 1 1+ %? 0 %? 1 — ¢10 + Noicor
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